Как называется сокращение мышц

Упражнения

Структурная организация мышцы

Мышцы формируются множеством волокон ткани, которые имеют узлы крепления к костям скелета. Они располагаются параллельно и в процессе мышечной работы взаимодействуют между собой. Именно волокна при поступлении импульсов обеспечивают механизм мышечного сокращения. Кратко структуру мышцы можно представить как систему, состоящую из молекул саркомер и миофибрилла.

Саркомеры и филаменты

Саркомеры представляют собой сегменты волокон, которые отделяются так называемыми Z-пластинами, содержащими бета-актинин. От каждой пластины отходят актиновые филаменты, а промежутки заполняются толстыми миозиновыми аналогами. Актиновые элементы, в свою очередь, похожи на ниточки бус, закрученных в двойную спираль.

В этой структуре каждая бусинка является молекулой актина, а в участках с углублениями в спирали находятся молекулы тропонина. Каждая из этих структурных единиц формирует механизм сокращения и расслабления мышечного волокна, связываясь друг с другом. Ключевую роль в возбуждении волокон играет клеточная мембрана.

Механика мышечных сокращений

рис. 2.4. Электрическое раздражение и мышечный ответ. Сверху показаны электрические импульсы, снизу — ответ мышцы

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Двигательная единица

Теперь стоит отойти от углубленной структуры мышцы и рассмотреть двигательную единицу в общей конфигурации скелетной мышцы. Это будет совокупность мышечных волокон, иннервируемых отростками мотонейрона. Работа ткани мышцы независимо от характера действия будет обеспечиваться волокнами, включенными в состав одной двигательной единицы.

То есть при возбуждении мотонейрона срабатывает механизм мышечных сокращений в рамках одного комплекса с иннервируемыми отростками. Такое разделение на мотонейроны позволяет целенаправленно задействовать конкретные мышцы, не возбуждая без надобности соседние двигательные единицы. По сути, вся мышечная группа одного организма делится на сегменты мотонейронов, которые могут объединяться в работе над сокращением или расслаблением, а могут действовать разнопланово или поочередно. Главное, что они независимы друг от друга и работают только с сигналами своей группы волокон.

Формы сокращений

Рис. 2.5. Формы мышечных сокращений. Слева схематически представлено укорочение саркомеров, в середине — изменения силы и длины, справа — пример сокращений

Выделяют различные функциональные формы мышечных сокращений (рис. 2.5).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением.
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом — затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц — ауксотонические сокращения.

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение — вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение — возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение — усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение — сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение — быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

Механизм мышечного сокращения

Мышечное сокращение происходит благодаря, скольжению актиновых нитей вдоль миозиновых (скользящее сокращение), при этом сокращается общая длина актомиозинового комплекса, без изменения длины нитей актина и миозина. Первостепенную роль в сокращении мышц играют временно замыкающиеся поперечные мостики (головки миозиновых молекул), которые и обеспечивают продвижение актиновых нитей вдоль миозиновых. Соответственно, сила мышечного сокращения будет завесить от мостиков, — чем больше прикреплено мостиков к актиновым нитям, тем сильнее сокращение.

Наряду с АТФ, важную роль в сокращении мышечного волокна играют еще ионы кальция, магния и вода.

Как называется сокращение мышц

Количество воды, которая содержит мускулатура, равняется примерно 72-80%, при этом мышечная ткань также содержит большое количество белков, и в малых количествах — гликоген, фосфолипиды, холестерин, креатинфосфат, креатин, витамины.

Чем больше мышечных волокон в скелетных мышцах, тем сильнее они будут.

Физиология мышечного сокращения
Механизм мышечного сокращения человека

В соответствии с молекулярной концепцией о скольжении нитей, работа мышечной группы и, в частности, ее сокращение реализуется в ходе скользящего действия миозинов и актинов. Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Весь цикл выполняется несколько раз, в результате чего происходит смещение вышеупомянутых нитей, а Z-сегменты саркомеров сближаются и укорачиваются.

Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость. Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии. Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам – это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы. Однако после сокращения или расслабления тоже совершается работа волокон.

За их спокойное состояние в определенной форме отвечает пластичность, определяющая сохранение постоянного тонуса, в котором на текущий момент находится механизм мышечного сокращения. Физиология пластичности может проявляться как в виде сохранения укороченного состояния волокон, так и в их растянутом виде.

В работе мышц участвует целая группа химических элементов, среди которых кальций и сократительные белки наподобие тропонина и тропомиозина. На базе этого энергетического обеспечения и выполняются рассмотренные выше физиологические процессы. Источником же этих элементов выступает аденозинтрифосфорная кислота (АТФ), а также ее гидролиз.

Дело в том, что биохимические механизмы мышечного сокращения и расслабления с поддержкой АТФ связаны с процессом выработки резервного запаса макроэрга в виде креатинфосфата. Объем этого резерва в несколько раз превышает запас АТФ и в то же время способствует его генерации. Также помимо АТФ энергетическим источником для мышцы может выступать гликоген. К слову, на мышечные волокна приходится около 75% всего запаса данного вещества в организме.

При расслаблении мышц происходит обратный перенос ионов Са с подключением ретикулума и кальциевых каналов. В процессе выхода ионов из цитоплазмы количество центров связки сокращается, в результате чего происходит разъединение актиновых и миозиновых филаментов. Иными словами, механизмы мышечного сокращения и расслабления подключают те же функциональные элементы, но оперируют ими разными способами.

После расслабления может наступать процесс контрактуры, при котором отмечается устойчивое сокращение мышечных волокон. Это состояние может сохраняться до момента, пока не наступит очередное действие раздражающего импульса. Бывает и контрактура краткого действия, предпосылками для которой становится тетаническое сокращение в условиях скопления ионов с большими объемами.

Мышечные волокна могут осуществлять работу динамически, статически и динамически-уступающе. Стандартная динамическая работа является преодолевающей – то есть мышца в момент сокращения перемещает объекты или его составные части в пространстве. Статическое действие мышцы в некотором роде избавлено от нагрузок, поскольку в этом случае не предусматривается изменение его состояния.

рис. 2.6 Схема образования поперечных связей — молекулярной основы сокращения саркомера

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 2.6). (В 1954 г.

две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее».

Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином.

Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тро-помиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание: Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы.

Связь между длиной саркомера и силой мышечных сокращений

Рис. 2.7. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2.7). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально;

рис. 2. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально;

рис. 2.9 Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую.

Данный физиологический механизм объясняется эластическими элементами мышцы – эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

Выделяют три
режимы мышечного сокращения:

    Изотонический;

    Изометрический;

    Смешанный (ауксометрический).

    Изотонический режим
    мышечного сокращения характеризуется
    преимущественным изменением длины
    мышечного волокна, без существенного
    изменения напряжения. Указанный режим
    мышечного сокращения наблюдается,
    например, при поднятии легких и средних
    по массе грузов.

    Изометрический режим
    мышечного сокращения характеризуется
    преимущественным изменением мышечного
    напряжения, без существенного изменения
    длины. Примером может служить изменения
    состояния мышц при попытке человека
    сдвинуть с места предмет большой массы
    (например, при попытке сдвинуть с места
    стену в комнате).

    Смешанный (ауксометрический)
    тип мышечного сокращения, наиболее
    реальный, наиболее часто встречающийся
    вариант. Содержит в себе компоненты
    первого и второго вариантов в разных
    соотношениях в зависимости от реальных
    условий окружающей среды.

Скорость укорочения мышечных волокон

рис. 2.8 Зависимость скорости укорочения от нагрузки

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 2.8). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Мышцы человека состоят из мышечных волокон, которые в свою очередь состоят из мышечных клеток. Взятое в отдельности мышечное волокно представляет собой многоядерную мышечную клетку, диаметр которой варьируется от 10 до 100 мкм, которая имеет оболочку сарколемму (клеточная мембрана), заполненной саркоплазмой (содержимое клетки, основа которой — матрикс).

Строение мышцы человека (сухожилие и мышечная ткань)
Строение скелетной мышцы

В зависимости от количества миофибрилл, различают белые и красные мышечные волокна.

Белые мышечные волокна отличаются от красных, большим количеством миофибрилл, и меньшим саркоплазмы, такое соотношение обеспечивает быстроту сокращение белых волокон. Благодаря наличию миоглобина (кислородосвязывающий белок) в мышцах, который придает цвет, мышечные волокна называют красными.

Саркоплазма в мышечных клетках содержит помимо миофибрилл, еще и митохондрии (энергетические станции клеток, в которых синтезируются АТФ), рибосомы, комплекс Гольджи, жировые включения, и другие постоянные компоненты клетки, без которых существование ее не возможно (органоиды).

Мышцы. Вид спереди

Актин – сократительный белок, на который приходиться около 15% от всего мышечного белка, содержится в тонких филаментах скелетных мышц, обеспечивая осуществление двигательных функций клеток.

Миозин – основной белок, из которого состоят мышечные волокна, благодаря которому мышцы имеют эластичность и способны сокращаться. Масса миозина составляет порядка 55% от всех сократительных белков, которые содержаться в мышечных волокнах.

Миозин сконцентрирован в поперечнополосатых мышцах (скелетной мускулатуре), которые отвечают за рефлексы и целенаправленность движений. Благодаря способности миозина расщеплять АТФ химическая энергия макроэргических связей АТФ переходит в механическую энергию мышечного сокращения.

Анатомия (строение) мышцы человека
Строение мышц человека

Актомиозин – комплекс, состоящий из белков актина и миозина, создает мышечные волокна, которые распределяются в определенном порядке. Сокращение актомиозина возможно, благодаря энергии, которая освобождается в результате взаимодействия АТФ с водой (гидролиз), таким образом, актомиозин определяет способность мышц к сокращению (мышечное сокращение).

рис.3. Зависимость скорости укорочения от нагрузки

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 3). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Виды работы скелетной мышцы

В спокойном состоянии нити волокон не взаимодействуют друг с другом посредством скольжения, так как центры связок закрываются молекулами тропомиозина. Возбуждение может иметь место только после электромеханического сопряжения. Данный процесс также делится на несколько этапов:

  • При активации нейромышечного синапса на мембране миофибриллы формируется так называемый постсинаптический потенциал, накапливающий энергию для действия.
  • Возбуждающий импульс благодаря системе трубок расходится по мембране и активизирует ретикулум. Этот процесс в итоге способствует снятию барьеров с каналов мембраны, по которым выпускаются ионы, связывающиеся с тропонином.
  • Белок тропонин, в свою очередь, открывает центры связок актина, после чего становится возможным механизм мышечных сокращений, но для его начала также потребуется соответствующий импульс.
  • Использование открывшихся центров начнется в момент, когда к ним присоединятся головки миозина по описанной выше модели.

Полный цикл этих операций происходит в среднем за 15 мс. Период от начальной точки возбуждения волокон до полного сокращения называется латентным.

Влияние растяжения на силу сокращений: кривая растяжения в покое

рис. 4. Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую.

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Как называется сокращение мышц

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

  1. Harrison BC. et al. 2011. lib or not lib? Regulation of myosin heavy chain gene expression in mice and men. Skeletal Muscle. 1 (1): 5. doi: 10.1186/2044-5040-1-5.
  2. Andersen, J.L., et al. 1994. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: Influence of training. Acta Physiologica Scandinavica 151 (2): 135-42.
  3. 3,03,1Andersen T.L, Aagaard P. 2000. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve. 23 (7): 1095-104.
  4. Andersen, L.L., et al. 2010. Early and late rate of force development: Differential adaptive responses to resistance training? Scandinavian Journal of Medicine and Science in Sports 20 (1): el62-69. doi:10.1111/j.l600-0838.2009.00933.x.
  5. Anderson, K., and Behm, D.G. 2004. Maintenance of EMG activity and loss of force output with instability. Journal of Strength and Conditioning Research 18:637-40.
  6. Aagaard, R, et al. 2011. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scandinavian Journal of Medicine and Science in Sports 21 (6): e298-307. doi:10.1111/j. 1600-0838.2010.01283.x.
  7. Henneman, E., Somjen, G., and Carpenter, D.O. 1965. Functional significance of cell size in spinal motoneurons./. Neurophysiol. 28:560-580.
  8. 8,08,1Latash, M.L. 1998. Neurophysiological basis of movement. Champaign, IL: Human Kinetics.
  9. Brooks, G.A., Fahey, T.D., and White, T.P. 1996. Exercise physiology: Human bioenergetics and its applications. 2nd ed. Mountainview, CA: Mayfield.
  10. Schmidtbleicher, D. 1992. Training for power events. In Strength and power in sport, ed. P.V. Komi, 381-95. Oxford, UK: Blackwell Scientific.
  11. Wiemann, K., and Tidow, G. 1995. Relative activity of hip and knee extensors in sprinting—Implications for training. New Studies in Athletics 10 (1): 29-49.

Фазы сокращения

Когда мускулатура приводится в действие раздражающим импульсом сверхпороговой силы, происходит одиночное сокращение, в котором можно выделить 3 фазы:

  • Уже упомянутый выше период сокращения латентного типа, в процессе которого волокна накапливают энергию для совершения последующих действий. В это время проходят процессы электромеханического сопряжения и открываются центры связок. На данной стадии подготавливается механизм сокращения мышечного волокна, который активизируется после распространения соответствующего импульса.
  • Фаза укорочения – длится 50 мс в среднем.
  • Фаза расслабления – также длится примерно 50 мс.

Режимы мышечного сокращения

Работа при одиночном сокращении была рассмотрена как пример «чистой» механики мышечных волокон. Однако в естественных условиях такая работа не совершается, поскольку волокна находятся в постоянном отклике на сигналы двигательных нервов. Другое дело, что в зависимости от характера этого отклика может происходить работа в следующих режимах:

  • Сокращения возникают при пониженной частоте импульсов. Если электрический импульс распространяется после завершения расслабления, то следует серия одиночных актов сокращения.
  • Высокая частота импульсных сигналов может совпадать с расслабляющей фазой предшествующего цикла. В этом случае амплитуда, в которой работал механизм сокращения мышечной ткани, будет суммироваться, что обеспечит длительное сокращение с неполными актами расслабления.
  • В условиях повышения частоты импульсов новые сигналы будут действовать в периоды укорочения, что спровоцирует длительное сокращение, которое не будет прерываться расслаблениями.

Оптимум и пессимум частоты

Амплитуды сокращений определяются частотой импульсов, которые раздражают мышечные волокна. В этой системе взаимодействия сигналов и откликов можно выделить оптимум и пессимум частоты. Первым обозначается частота, которая в момент действия будет накладываться на фазу повышенной возбудимости. В таком режиме может активизироваться механизм сокращения мышечного волокна с большой амплитудой.

В заключение

Процессы организации мышечного действия подключают самые разные функциональные элементы и системы. В работе задействуется сложный комплекс участников, каждый из которых выполняет свою задачу. Можно видеть, как в процессе активации механизма мышечных сокращений срабатывают и косвенные функциональные блоки.

Как называется сокращение мышц

Основная же нагрузка приходится непосредственно на волокна, которые выполняют те или иные действия по командам двигательных единиц. Причем характер выполнения определенной работы может быть разным. На него будут влиять параметры направляемого импульса, а также текущее состояние мышцы.

Оцените статью
avrora22.ru