МЫШЕЧНАЯ ТКАНЬ — Большая Медицинская Энциклопедия

Инфо

Структура мышечного волокна и механизм работы мышц

Мышечное волокно – единая клетка с тонкими (актиновыми) и толстыми (миозиновыми) нитями, окруженными митохондриями. Нити имеют возможность взаимодействовать на небольших участках волокон, это пространство называется саркомером и суммарно составляет 30% длины мышечного волокна, таким образом, мышца может сократиться лишь на 30% своей длины.

Механизм сокращения мышц (теория скользящих нитей 1954 г.): в покое зона взаимодействия наполнена «тормозной жидкостью» — ионами магния (Mg2 ), что позволяет не затрачивать энергию в покое. При проходе возбуждающего импульса, ионы кальция выходят из цистерны в зону взаимодействия и снимают «тормоза» с актиновых нитей и активируют центры миозиновых молекул, после чего происходит сокращение. После окончания стимуляции кальций возвращается в цистерны, происходит расслабление.

https://www.youtube.com/watch?v=ytpressru

В процессе работы мышц в качестве источника энергии выступает глюкоза (гликоген) и жирные кислоты при достаточной концентрации кислорода. Мышцы способны накапливать аденозинтрифосфат (источник энергии), но этих запасов в мышце хватает только на восемь одиночных сокращений. Для ресинтеза АТФ организм использует запасы креатинфосфата – накопитель-передатчик энергии от митохондрий к акто-миозиновым комплексам.

Костно-мышечная система человека. Рост и развитие мышц и костей тесно связанны – кости являются точкой опоры и складом кальция для мышц, а мышцы, в свою очередь, регулируют питание и рост костей в длину до 25 лет. Мышца прикрепляется сухожилием к надкостнице и при сокращении натягивает ее, создавая «поднадкостничное пространство», обменные процессы в котором значительно более интенсивны.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая М. т. (textus muscularis nonstriatus) человека и позвоночных животных формирует мышечные оболочки внутренних органов и стенки кровеносных сосудов.

Гистогенез

МЫШЕЧНАЯ ТКАНЬ — Большая Медицинская Энциклопедия

Для эмбрионального гистогенеза гладкой М. т. характерно обособление среди мезенхимы, окружающей развивающийся орган или сосуды (кишечную трубку, трахею, бронхи, мочеточники, аорту, артерии, вены и т. д.), веретенообразных клеток, располагающихся обычно в два слоя (внутренняя и наружная мышечные оболочки).

Строение

Рис. 1. Микропрепараты мышечной оболочки кишечника саламандры (продольный разрез). Гладкая мышечная ткань в расслабленном (а) и сокращенном (б) состоянии: 1 — ядра; 2 — миофибриллы.

Рис. 1. Микропрепараты мышечной оболочки кишечника саламандры (продольный разрез). Гладкая мышечная ткань в расслабленном (а) и сокращенном (б) состоянии: 1 — ядра; 2 — миофибриллы.

В мышечной оболочке большинства внутренних органов гладкие мышечные клетки имеют удлиненную (от 15 до 500 мкм) веретенообразную форму. В соответствии с формой клетки ядра вытянуты в длину, причем у млекопитающих при сокращении клетки ядро может приобретать штопорообразную форму. У нек-рых видов амфибий сокращение гладкой мышечной клетки сопровождается сжатием ядра вдоль оси (рис. 1).

Рис. 2. Объемная схема ультраструктуры участка гладкой мышечной ткани позвоночных: а — мышечные клетки; б — небольшой участок клеток, изображенных на схеме а (1 — ядра; 2 — зона тесного контакта клеток; 3 — митохондрии; 4 — плазмолемма; 5 — впячивание плазмолеммы; 6 — эндоплазматическая сеть; 7 — протофибриллы).

Рис. 2. Объемная схема ультраструктуры участка гладкой мышечной ткани позвоночных: а — мышечные клетки; б — небольшой участок клеток, изображенных на схеме а (1 — ядра; 2 — зона тесного контакта клеток; 3 — митохондрии; 4 — плазмолемма; 5 — впячивание плазмолеммы; 6 — эндоплазматическая сеть; 7 — протофибриллы).

По данным электронной микроскопии, ультраструктура гладких мышечных клеток характеризуется наличием многочисленных плазмо-леммальных виячиваний типа пиноцитозныхпузырьков (рис. 2). Предполагают, что с этими впячиваниями связана передача внутрь клетки раздражения, вызывающего ее возбуждение и сокращение.

Специфическим структурным признаком гладкой мышечной клетки, обнаруживаемым методом обычной световой микроскопии, является наличие в цитоплазме тонких волокон — миофибрилл, хорошо различимых на окрашенных железным гематоксилином микропрепаратах. На электронограммах выявляется, что миофибриллы состоят из более тонких волоконец — протофибрилл, или миофиламентов.

Процесс сокращения в гладкой М. т. на обычных гистол, препаратах, окрашенных железным гематоксилином, обнаруживается по характерным уплотнениям (полосам сокращения), проходящим через многие ряды клеток. На электронограммах сокращение гладких мышечных клеток выявляется сгущением протофибрилл.

Классификация мышц тела человека

Мышцы человека и скелет образуют сложную систему опорно-двигательного аппарата, который по своей природе абсолютно уникален. Мышечная система состоит не только из скелетных мышц, но и гладких, а также сердечной мышцы (миокард). Принято считать, что мышц в теле человека, от самых мельчайших до крупных, около 640. Все они отличаются размерами, функциями и структурой.

По форме мышцы различаются на:

  • длинные;
  • короткие;
  • широкие.

По направлению волокон делятся на мышцы:

  • с параллельными волокнами — длинные, веретенообразные и лентовидные мышцы;
  • с поперечными во­локнами;
  • с косыми волокнами – одноперистые, двуперистые.

По положению в теле делятся на:

  • поверхностные;
  • глубокие;
  • наружные;
  • внутренние;
  • медиальные;
  • латеральные.

Функциональные группы мышц при движении конечностей:

  • сгибатели;
  • разгибатели;
  • отводящие;
  • приводящие;
  • пронаторы;
  • супинаторы.

Относительно движения туловища различают:

  • сгибатели;
  • разгибатели;
  • наклоняющие (вправо – влево);
  • скручивающие (вправо – влево).

Также условно по типу взаимодействия при движении различают мышцы:

  • Агонисты – мышцы, выполняющие основную работу по заданному движению (главная мышца).
  • Синергисты – мышцы, помогающие главной осуществить заданное движение.
  • Антагонисты – мышцы, противодействующие заданному движению.
  • Стабилизаторы (фиксатор, нейтрализатор) – мышцы, удерживающие равновесие и безопасное положение суставов во время движения.

ПОПЕРЕЧНОПОЛОСАТАЯ МЫШЕЧНАЯ ТКАНЬ

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Поперечнополосатая мышечная ткань (textus muscularis transverso-striatus) представлена скелетной и сердечной М. т.

Рис. 3. Схема процесса дифференцировки поперечнополосатых мышечных волокон в эмбриогенезе: а — стадия миобластов (часть миобластов находится в стадии митоза); б — слияние миобластов в мышечные трубочки (указаны стрелкой); в — сформированная мышечная трубочка; г — мышечное волокно: 1—центрально-осевой пучок миофибрилл, 2 — ядра мышечного волокна.

Рис. 3. Схема процесса дифференцировки поперечнополосатых мышечных волокон в эмбриогенезе: а — стадия миобластов (часть миобластов находится в стадии митоза); б — слияние миобластов в мышечные трубочки (указаны стрелкой); в — сформированная мышечная трубочка; г — мышечное волокно: 1—центрально-осевой пучок миофибрилл, 2 — ядра мышечного волокна.

МЫШЕЧНАЯ ТКАНЬ — Большая Медицинская Энциклопедия

Скелетная мышечная ткань [textus muscularis striatus (sceleti)]. Гистогенез. Основной источник развития скелетной М. т. в эмбриогенезе — мезодерма сомитов, из к-рой возникают «текучие» (перемещающиеся от места закладки к скелетным частям) закладки, состоящие из мезенхимных клеток, формирующих первичные модели мышц на месте их дифференцировки.

Дифференцирующаяся мезенхимная клетка принимает веретенообразную форму миобласта, характеризующую первый (клеточный) этап дифференцировки. Число миобластов увеличивается за счет митотических делений, а также, как предполагают, путем превращения клеток-сателлитов (немногочисленные одноядерные клетки с уплотненным расположением хроматина в ядре и слабым развитием цитоплазматических органелл).

При переходе к следующему, второму этапу дифференцировки митотические деления прекращаются и миобласты сливаются концами, образуя мышечные трубочки (myotubuli), в к-рых ядра занимают центрально-осевое положение (рис. 3). В периферической зоне мышечных трубочек формируются фибриллярные и мембранные структуры.

Дифференцировка миобластов и мышечных трубочек может происходить и в культуре ткани вне организма. Однако третий этап дифференцировки — превращение мышечных трубочек в мышечные волокна с периферическим расположением ядер и центрально-осевым расположением миофибрилл может происходить только в организме в результате взаимодействия с двигательными нервными волокнами (см. Мышцы).

Изменения мышечной ткани при патологических состояниях

Специфическая особенность скелетной М. т. заключается в относительной стабильности ее структурного состава: константное число мышечных волокон в каждой скелетной мышце устанавливается вскоре после рождения и сохраняется до начала старческой инволюции. Возрастные изменения скелетной М. т. характеризуются уменьшением объема мышечных волокон.

Те же закономерности, возможно, распространяются и на сердечную М. т., для к-рой также характерны возрастные изменения объема кардиомиоцитов. В связи с отмиранием отдельных мышечных волокон в скелетной М. т. и замещением их соединительной тканью в старческом возрасте уменьшаются эластичность и упругость М. т.

Возрастные изменения гладкой М. т. изучены недостаточно.

Гладкая М. т. оболочек органов дыхательной, пищеварительной, мочеполовой систем, а также стенки кровеносных сосудов может подвергаться патол, изменениям гл. обр. в результате нарушения нервной и эндокринной регуляции, а также витаминного, солевого и микроэлементного баланса. Патол. изменение гладкой М. т.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

(инфильтрация гладких мышечных клеток жировыми и известковыми включениями) наблюдается при атеросклеротическом поражении стенки кровеносных сосудов. Участки гладкой М. т. могут подвергаться малигнизации под влиянием общих этиол, факторов опухолевого роста (см. Опухоли). Встречаются как доброкачественные опухоли — лейомиомы (см.), так и злокачественные — лейомиосаркомы (см.), исходящие из гладкой М. т. ряда органов: кишечника, бронхов и др.

Для скелетной М. т. характерна специфическая структурная реакция на различные нарушения метаболизма: дистрофия миофибриллярного и мембранного аппарата, появление жировых включений, вакуолизация саркоплазмы и особенно гиалиновое перерождение мышечных волокон, выражающееся в развитии в них поперечно расположенных глыбок, полос и узлов (так наз.

ценкеровская дегенерация). Денервационная атрофия скелетных мышц на первом этапе характеризуется повышением уровня синтетических процессов (увеличением содержания РНК), усилением пластической активности и структурными изменениями, типичными для регенерационных процессов (переход ядер в центральноосевое положение, развитие миобластов, расщепление мышечных волокон);

на более поздних этапах происходит истончение мышечных волокон, ожирение саркоплазмы, дистрофия мышечных волокон с последующим замещением соединительной тканью. Денервационная атрофия скелетных мышц на первом этапе при соответствующих леч. мероприятиях обратима. Постденервацион-ному восстановлению подвергаются гл. обр. моторные бляшки. По данным Р. П. Женевской (1974) нервно-мышечные веретена после длительной денервационной атрофии не восстанавливаются.

Сердечная М. т. реагирует специфическими структурными изменениями на различные патогенные воздействия, включая длительное ги-перфункциональное напряжение, к-рое может вызывать гипертрофию сердечной М. т., выражающуюся гл. обр. в утолщении мышечных волокон. При систематическом отравлении (напр., алкоголем, никотином) наблюдается жировая дистрофия стромы сердечной М. т.

При экспериментальном инфаркте, вызванном перевязкой венечных сосудов, наблюдаются характерные ишемические изменения сердечной М. т.: набухание и разрушение митохондрий, сверхсокращение саркомеров (высокая степень их укорочения) с дезорганизацией протофибриллярного аппарата и саркотубулярной системы.

Пластическая активность мышечной ткани выражается в процессах первичного (эмбрионального) и вторичного (регенерационного, трансплантационного , ренервационного, гиперфункционального) гистогенеза. Гладкая М. т. обладает достаточно высокими пластическими свойствами, обеспечивающими возможность регенерации при ее повреждениях.

Демонстративным примером высокой пластической активности гладкой М. т. является гиперплазия гладкомышечной стенки матки при беременности. В эксперименте доказано, что в этом состоянии гладкая М. т. матки, перенесенная путем аутотрансплантации в измельченном виде на место удаленной скелетной мышцы, может формировать гладкомышечную модель скелетной мышцы.

Вопрос о способе самообновления гладкой М. т. недостаточно изучен. Школой А. А. Заварзина разработана гипотеза о камбиальном механизме этого процесса (дифференцировка гладкой М. т. происходит за счет особых камбиальных клеток соединительнотканной природы). При изучении регенерации гладкой мышечной ткани в эксперименте наблюдаются митотические деления гладких мышечных клеток.

Как установлено в эксперименте А. Н. Студитским, А. Р. Стригано-вой (1951), А. Н. Студитским (1959, 1978), Р. П. Женевской (1974), регенерационная и трансплантационная активность поперечнополосатой М. т., вопреки старым представлениям о низком уровне ее пластических свойств, оказалась весьма высокой.

Трудность непосредственного применения разработанных в эксперименте методов свободной аутопластики М. т. в хирургической практике заключается в недостаточной изученности видовых пластических свойств скелетной М. т. человека. Тесты, разработанные в эксперименте для испытания пластической активности М. т.

(аутотрансплантация измельченной М. т. под кожу, денервация-реиннервация М. т., стимуляция вторичного развития М. т. введением в пищевой рацион тиреоидина, повышающего основной обмен), требуют специального исследования применительно к человеческому организму. Опыт сравнительного (на разных видах животных) изучения свободной аутопластики мышц (либо в измельченном состоянии, либо после предварительной денервации или травматизации) показал, что М. т.

По существовавшим ранее представлениям, сердечная М. т. обладает невысокой пластической активностью; доказательством этого положения считалось то, что некротизированные участки сердечной М. т., возникающие в результате инфаркта, замещаются соединительной тканью.

Однако рядом исследователей установлено, что сердечная М. т. обладает специфическим механизмом самовосстановления, к-рый обеспечивается, с одной стороны, соединительнотканным каркасом, замещающим в течение сравнительно короткого срока участок поврежденной сердечной М. т. (напр., омертвевший в результате инфаркта) соединительнотканным рубцом, и более медленно реагирующим на повреждение блоком собственно кардиомиоцитов, за счет к-рых возникает рабочая гипертрофия и гиперплазия сохранившихся участков сердечной мышцы.

Существенную роль в самообновлении сердечной М. т. играет внутриклеточная регенерация кардиомиоцитов, включающая постепенную замену функционировавших определенный срок цитоплазматических и ядерных органелл новообразованными (как путем их размножения и разрастания, так и путем молекулярной перестройки).

Строение мышц человека

В теле человека выделяют основные группы мышц:

  • Мышцы туловища, к ним относят – мышцы шеи, спины, грудные и мышцы живота.
  • Мышцы верхних конечностей – мышцы плеча, дельтовидная группа, мышцы предплечья, кистей.
  • Мышцы нижних конечностей (ног) – ягодичные, четырехглавые, двуглавые мышцы бедра, приводящие, мышцы голени и стоп.
Мышцы человека схема с названиями - вид спереди
Атлас мышц человека — вид спереди:
1 — Лестничная мышца;
2 — Большая грудная мышца;
3 — Передняя дельтовидная мышца;
4 — Клювовидно плечевая мышца;
5 — Прямая мышца живота;
6 — Наружная косая мышца живота;
7 — Локтевой сгибатель запястья;
8 — поперечная мышца живота;
9 — Лучевой сгибатель запястья;
10 — Портняжная мышца;
11 — Прямая мышца бедра;
12 — Латеральная мышца бедра;
13 — Медиальная широкая мышца бедра;
14 — Передняя большеберцовая мышца;
15 — Малоберцовая мышца;
16 — Длинный разгибатель большого пальца стопы;
17 — Мышца, приводящая большой палец стопы;
18 — Грудино-ключично-сосцевидная мышца;
19 — Малая круглая мышца;
20 — Передняя зубчатая мышца;
21 — Двуглавая мышца плеча;
22 — Внутренняя косая мышца живота;
23 — Круглый пронатор;
24 — Сгибатель пальцев;
25 — Лучевой разгибатель запястья;
26 — Длинный сгибатель большого пальца кисти;
27 — Напрягатель широкой фасции бедра;
28 — Подвздошно-поясничная мышца;
29 — Подвздошная мышца;
30 — Гребенчатая мышца;
31 — Длинная приводящая мышца;
32 — Тонкая мышца;
33 — Икроножная мышца;
34 — Камбаловидная мышца;
35 — Разгибатель пальцев;
36 — Сгибатель пальцев.

Атлас мышц человека — вид сзади:1 — Полуостистая мышца;2 — Трапециевидная мышца;3 — Подостная мышца;4 — Средний дельтовидный пучок мышц;5 — Задний дельтовидный пучок мышц;6 — Подлопаточная мышца;7 — Малая круглая мышца;8 — Ромбовидная мышца;9 — Трехглавая мышца плеча;10 — Локтевая мышца;11 — Многораздельная мышца;

12 — Верхняя близнецовая мышца;13 — Квадратная мышца бедра;14 — Внутренняя запирательная мышца;15 — Внешняя запирательная мышца;16 — Латеральная широкая мышца бедра;17 — Нижняя близнецовая мышца;18 — Большая приводящая мышца;19 — Подошвенная мышца;20 — Икроножная мышца;21 — Камбаловидная мышца;22 — Сгибатель пальцев;

https://www.youtube.com/watch?v=ytadvertiseru

23 — Ременная мышца;24 — Мышца поднимающая лопатку;25 — Надостная мышца;26 — Большая круглая мышца;27 — Разгибающая мышца спины;28 — Широчайшая мышца спины;29 — Плечевая мышца;30 — Плечелучевая мышца;31 — Разгибатель пальцев;32 — Квадратная мышца поясницы;33 — Малая ягодичная мышца;34 — Средняя ягодичная мышца;

35 — Грушевидная мышца;36 — Подвздошно-большеберцовый тракт;37 — Большая ягодичная мышца;38 — Полусухожильная мышца;39 — Бицепс бедра;40 — Полуперепончатая мышца;41 — Задняя большеберцовая мышца;42 — Сгибатель большого пальца стопы;43 — Блок таранной кости;44 — Мышца, отводящая мизинца.Рассмотрим каждую группу и функции мышц подробно.

Таблица 2. Названий мышц туловища человека и их функции.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Шея (грудинно-ключично-сосцевидная мышца). Наклон головы по сторонам, назад и вперед, поворот головы и шеи. Упражнения с отягощением для шеи. Борьба, бокс, футбол.
Большая грудная мышца: ключичная, грудинная. Приведение руки вперед, внутрь, вверх и вниз. Жимовые движения, отжимания от пола и на брусьях, сведения и разведения рук на блоках.
Прямая мышца живота. Наклон позвоночника вперед, разведение ребер. Все виды скручиваний из положения лежа по длинной и короткой амплитуде движения.
Большая передняя, зубчатая мышца. Поворот лопатки вниз, разведение лопатки, расширение грудной клетки, подъем рук Армейские жимы, пуловер. Тяжелая атлетика, метание, прыжки с шестом
Косые наружные мышцы живота. Сгибание позвоночника вперед и в стороны. Диагональные скручивания туловища, боковые наклоны. Толкание ядра, метание копья, теннис.
Трапециевидная мышца. Подъем и опускание плечевого пояса, передвижение лопаток, отведение головы назад и в стороны. Гребля, жимы вверх, стойка на руках. Тяжелая атлетика, гимнастика.
Широчайшие мышцы спины. Отведение руки вниз и назад, расслабление плечевого пояса, сгибание торса в стороны. Подтягивания на перекладинах и тяговые движения, гребля. Тяжелая атлетика, гимнастика.
Мышцы спины: надостная мышца, малая круглая мышца, большая круглая мышца, ромбовидная. Поворот рук наружу и внутрь, помощь в отведении рук, поворот, подъем и сведение лопаток Приседы, становая, гребля, толкание ядра, плавание, футбол.

Таблица 3. Мышцы верхних конечностей.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Двуглавая мышца плеча. Сгибание рук в локтевых суставах, разворот кисти наружу. Сгибания рук – все виды, гребля, подтягивания, канат.
Клювовидно-плечевая мышц. Подъем рук. Жимы и разведение рук. Метание, боулинг, армрестлинг.
Плечевая мышца. Приведение предплечья. Сгибания локтей всеми хватами, канат, гребля.
Группа мышц предплечья: плечелучевая, длинный лучевой разгибатель кисти, локтевой разгибатель кисти, отводящая мышца, разгибатель большого пальца. Приведение предплечья к плечу, сгибание и выпрямление кисти и пальцев. Сгибание кистей, кистевые эспандеры, удержание веса пальцами, гиревой спорт, кроссфит.
Трехглавая мышца. Выпрямление руки и отведение назад. Разгибания – выпрямление рук в локтях, гребля, стойка на руках.
Группа дельтовидных мышц: передняя, средняя (боковая), задняя головка. Подъем рук. Жимы, подъемы, тяги свободного веса. Тяжелая атлетика, толкание, метание, гимнастика.

Таблица 4. Мышцы нижних конечностей.

Мышечная группа Функции мышц В каких упражнениях и видах спорта активно включаются
Четырехглавая мышца бедра. Выпрямление ног в тазобедренных и коленных суставах, поворот ноги наружу и внутрь. Разгибание ног в колене, приседы и жимы ногами. Велоспорт, скалолазание, легкая атлетика, футбол, пауэрлифтинг.
Бицепс бедра: полуперепончатая, полусухожильная мышца. Сгибание ног, разгибание бедра. Сгибание ног в колене, тяги и гиперэкстензия.
Большая ягодичная мышца. Выпрямление и поворот бедра наружу. Тяжелая атлетика, лыжный спорт, велоспорт, плавание.
Икроножная мышца. Выпрямление стоп, напряжение ноги в колене. Подъем на носок, приседы в пол амплитуды. Прыжки, бег, велоспорт.
Камбаловидная мышца. Способствует разгибанию стопы. Подъем на носок сидя в тренажере.
Передняя большеберцовая, длинная малоберцовая мышца. Выпрямление, сгибание и поворот ступни. Подъем на носки и подъем пальцев стоп, стоя на пятке.

БИОХИМИЯ МЫШЕЧНОЙ ТКАНИ

В скелетной М. т. млекопитающих содержится от 72 до 80% воды, ок. 20—28% веса М. т. составляет сухой остаток, гл. обр. белки. Помимо белков, в состав М. т. входят экстрактивные азотсодержащие вещества, безазотистые вещества (гликоген и другие углеводы, различные липиды, соли органических веществ и др.), а также соли неорганических к-т и другие хим. соединения (табл. 1).

Белки скелетной М. т. делятся на три основные группы: саркоплазматические, миофибриллярные и белки стромы. По данным H. Н. Яковлева (1974), на долю саркоплазматических белков приходится ок. 35%, миофибриллярных — 45% и белков стромы — 20% всего мышечного белка. Указанные группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой р-ра (полусуммы произведений концентрации каждого иона на квадрат его заряда).

Мышцы человека картинка

Саркоплазматические белки растворяются в воде и в солевых средах с низкой ионной силой. Существовавшее ранее подразделение саркоплазматических белков на мио ген, глобулин X, миоальбумин и белки-пигменты рядом авторов отрицается. Термин «мио-ген» является собирательным. В частности, в состав белков группы миогена входит ряд соединений, наделенных ферментативной активностью, напр, ферменты гликолиза {альдолаза, глицеральдегид-3-фосфат-дегидрогеназа, глицерол-3-фосфат-дегидрогеназа, фосфорилаза, лактат-дегидрогеназа и др.).

При солевом фракционировании во фракцию миогеновых белков попадает и миоальбумин, близкий или даже идентичный по своим свойствам альбуминам сыворотки крови. К саркоплазматическим белкам относят также днхательный пигмент миоглобин (см.) и разнообразные ферменты, локализованные гл. обр. в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также нек-рые реакции азотистого и липидного обмена. Лики (P.

Миофибриллярные белки — миозин, актин и актомиозин растворяются в солевых средах с высокой ионной силой. К миофибриллярным белкам относятся также так наз. регуляторные белки — тропомиозин, тропонин, альфа-актинин, бета-актинин, образующие в мышце с актомиозином единый комплекс.

Главный миофибриллярный белок — миозин составляет 50—55% сухого веса миофибрилл. Работами В. А. Энгельгардта и М. Н. Любимовой показано, что миозин обладает АТФ-азной активностью, т. е. является ферментом со способностью катализировать расщепление АТФ на АДФ и фосфорную к-ту. Хим. энергия АТФ, освобождающаяся в ходе ферментативной реакции, идущей при участии миозина, превращается в механическую энергию сокращающейся мышцы.

Относительный мол. вес (масса) миозина скелетных мышц человека ок. 500 000. Молекула миозина, обладающая вытянутой формой (длина ее 150 нм), состоит из двух тяжелых полипептидных цепей с относительным мол. весом 205 000—210 000 и нескольких коротких легких цепей с относительным мол. весом ок. 20 000.

https://www.youtube.com/watch?v=channelUC77Vn2lK0BWl4EqNZNUkgxQ

Тяжелые цепи образуют длинную закрученную а-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головку» молекулы), способную соединяться с актином. Эти головки выдаются из основного стержня молекулы. Легкие цепи, находящиеся в головке миозиновой молекулы и принимающие участие в проявлении АТФ-азной активности миозина, гетерогенны по аминокислотному составу.

Актин, составляющий ок. 20% сухого веса миофибрилл, открытый Ф. Штраубом в 1942 г., существует в двух формах: глобулярный актин (Г-актин) и фибриллярный актин (Ф-актин). Молекула Г-актина с относительным мол. весом 42 000 состоит из одной полипептидной цепочки, в образовании к-рой принимают участие 374 аминокислотных остатка. Ф-актин, являющийся продуктом полимеризации Г-актина, имеет структуру двухтяжевой спирали, детали к-рой еще не вполне выяснены.

При мышечном сокращении миозин вступает в соединение с Ф-актином, образуя новый белковый комплекс— актомиозин. Последний обладает АТФ-азной активностью. Однако АТФ-азная активность актомиозина отличается от АТФ-азной активности миозина: актомиозин активируется ионами магния и ингибируется этилендиаминтетраацетатом (ЭДТА) и АТФ в высокой концентрации, тогда как мгозиновая АТФ-аза ингибируется ионами магния, активируется ЭДТА и не ингибируется высокой концентрацией АТФ. Оптимальные значения pH для обеих АТФ-аз также различны.

Содержащиеся в миофибриллах тропомиозин, тропонин и нек-рые другие регуляторные белки непосредственно участвуют в регуляции процесса мышечного сокращения. Молекула тропомиозина, открытого Бейли (К. Bailey) в 1946 г., состоит из двух а-спиралей и имеет вид стержня длиной 40 нм; относительный мол. вес тропомиозина 65 000.

Тропонин, соединяясь с тропомио-зином, образует комплекс, названный Эбаси нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам кальция.

Показано, что тропонин способен фосфорилироваться при участии протеинкиназ, зависимых от циклического аденозин-З’,5′-монофосфата (цАМФ). Вопрос о том, имеет ли отношение фосфорилирование тропонина в целостном организме к регуляции мышечного сокращения, остается пока неясным.

Белки стромы в скелетной М. т. представлены в основном коллагеном (см.) и его дериватами, а также эластином (см.). Строма скелетной М. т., остающаяся после исчерпывающей экстракции мышечного гомогената солевыми р-рами с высокой ионной силой, состоит в значительной мере из соединительнотканных элементов стенки сосудов и нервов, а также сарколеммы и нек-рых других структур.

Экстрактивные азотсодержащие вещества скелетной М. т. представлены адениновыми нуклеотидами — АТФ, АДФ и АМФ (см. Аденозинфосфорные кислоты), нуклеотидами неаденинового ряда, креатинфосфатом, креатином, креатинином, карнозином, ансерином, свободными аминокислотами и др. По данным И. И. Иванова (1969), содержание адениновых нуклеотидов в скелетной М. т.

На долю азота креатина (см.) и креатинфосфата (см. Фосфагены), по данным Д. Л. Фердмана (1966), приходится до 60% небелкового азота мышц. Креатинфосфат и креатин участвуют в хим. процессах, связанных с мышечным сокращением.

Имидазолсодержащие дипептиды — карнозин (см.) и его метилированное производное ансерин (см.) — способны восстанавливать работоспособность утомленных мышц и влиять на передачу нервных импульсов с нерва на мышцы.

Рис. 4. Классическая схема строения мышечного волокна по Гейденгайну: 1 — диск А; 2 — диск I; 3 — перегородка T (телофрагма); 4 — перегородка М (мезофрагма); 5 — саркосомы; 6 — поперечная сеть; 7 — миофибриллы.

Из свободных аминокислот в М. т. наиболее высока концентрация глутаминовой кислоты (см.) — ок. 120 мг/100 мл и ее амида глутамина (см.) — 80—100 мг/100 мл. В М. т. содержится целый ряд фосфатидов (см.): фосфатидилхолин, фосфатидилэтаноламин, фосфатидил-серин и др.

Эти соединения играют важную роль в структуре М. т., входя в состав клеточных мембран. Фосфатиды принимают участие также в обменных процессах, в частности в качестве субстратов тканевого дыхания. Другие азотсодержащие вещества М. т.: мочевина, мочевая к-та, аденин, гуанин, ксантин и гипоксантин— содержатся в небольшой концентрации и, как правило, являются либо промежуточными, либо конечными продуктами азотистого обмена.

Безазотистые вещества скелетной М. т. представлены в основном гликогеном (см.); его концентрация колеблется от 0,3 до 3% в пересчете на сырой вес. На долю других представителей углеводов приходятся десятые и сотые доли процента. В М. т. находят лишь следы свободной глюкозы и очень мало гексозофосфатов.

https://www.youtube.com/watch?v=ytcopyrightru

Неорганические соли в скелетной М. т. содержатся в виде ионов. Среди катионов наибольшую концентрацию имеют калий (см.) и натрий (см.). Калий гл. обр. сосредоточен внутри мышечных волокон, а натрий находится преимущественно в межклеточном веществе. Значительно ниже в скелетной М. т. содержание магния, кальция и железа; в М. т. содержатся также микроэлементы (см.) — кобальт, алюминий, никель, бор, цинк и др.

Некоторые особенности химического состава гладкой и сердечной мышечной ткани у млекопитающих. Данные о хим. составе гладкой и сердечной М. т. получены в основном на лаб. животных; сведения о хим. составе этих групп М. т. у человека весьма ограничены. Сердечная М. т. по содержанию ряда хим. соединений занимает промежуточное положение между скелетной и гладкой М. т.

https://www.youtube.com/watch?v=ytaboutru

Сердечная и особенно гладкая М. т. содержат по сравнению со скелетной М. т. меньше миофпбриллярных белков. Так, содержание миофибрилляр-ных белков (в мг азота на 1 г ткани) в скелетной мускулатуре кролика 17,31, в миокарде — 7,32, а в миометрии — 3,90. Концентрация же белков стромы в миокарде и гладкой М. т. выше, чем в скелетной мускулатуре.

По данным И. И. Иванова (1961), на долю азота белков стромы в скелетной мускулатуре кролика приходится 10,1% от общего азота М. т., в миокарде — 28,2%, а в миометрии — 40,4%. В мышце левого желудочка сердца содержание миофибрилл ярных белков, в частности актомиозина, значительно выше, чем в предсердиях и в ткани миокарда в целом, что, несомненно, связано с более выраженной сократительной функцией этого отдела миокарда.

Оцените статью
avrora22.ru