Как синтезировать белок в мышцы?

Вопросы и ответы

Каждый день погибает 167 грамм мышц

Превращение пищевого протеина в мышечный – это магия природы, которую веками разгадывают ученые. После того, как вы положили высоко-белковую еду в рот, она неизбежно пойдет двумя путями: либо в мышцы, либо в сточные воды. Чтобы белок пошел в мышцы нужны условия для синтеза мышечного белка.

Надо признать, что у всех людей белок синтезируется, так как это необходимо для сохранения уже имеющихся мышц, внутренних органов, да вообще всего тела.

У обычных людей на теле около 30 кг мышц. Ежедневно часть этих мышц исчезает – если быть точнее, то 167 грамм, – но столько же восстанавливается, я бы сказал возрождается.

Чтобы возрождение мышц было в балансе с ежедневной их гибелью, медики рекомендуют взрослым людям потреблять с пищей около 80 грамм белка или 1 грамм белка на килограмм массы тела.

Однако мы же не хотим быть обычными людьми – нам нужно выделяться мускулатурой, поэтому во многих журналах уже написано и многими прочитано, что для роста мышц нужно потреблять 1,5 или даже 2 грамма белка на килограмм массы тела. И многие уже начали практиковать такое потребление.

Но с какой стати организму синтезировать столько белка, сколько мы положили себе в рот? Что молодых атлетов заставляет думать, что за один день их организм может синтезировать 160 грамм белка, если до этого он синтезировал только 80? Часто люди на этот вопрос отвечают так: “Но я же тренируюсь!”

Составить программу тренировок бесплатно

Долгие годы я наблюдал за связью тренировок и синтезом белка и вот, что я обнаружил. Одна тонна поднятого железа на тренировках требует дополнительно одного грамма белка.

Как синтезировать белок в мышцы?

Например, восьмидесяти килограммовый атлет, который за тренировку поднимает 30 тонн сможет синтезировать только 30 грамм белка. Мое наблюдение подтвердили ученые, которые сказали, что после тренировки усваивается только 30 грамм белка. Наверное, предметы их наблюдения поднимали за тренировку 30 тонн.

Почему одна тренировка не дает прирост 150 грамм мышц?

В мышцах 20 процентов белка, как в нежирной говядине. Синтез 30 грамм белка дает прирост 150 грамм мышц.

Казалось бы, что одна тренировка способна синтезировать 30 грамм белка и 150 грамм мышц. Но что нас кормит, то и убивает. Тренировка не только стимулирует синтез белка, но на тренировке белок мышц повреждается.

В упражнениях со жгутом трудно считать тоннаж, но это силовые упражнения

Образование белка является многоступенчатым процессом. 

Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий:

  1. Транскрипция – это реакции переписывания наследственной информации с макромолекулы ДНК на матричную РНК. Ее называют также информационной. Краткое обозначение: м-РНК, и-РНК. Процесс протекает в ядре клетки.

  2. Перемещение и-РНК к месту синтеза белка.

  3. Трансляция – это перенос информации о чередовании нуклеотидов м-РНК на макромолекулу белка. Процесс идёт вне ядра.

Биосинтез белка – сложный механизм, который включает в себя два выше упомянутых этапа, а именно транскрипцию и трансляцию. Первым происходит транскрибируемый этап (он разделяется на два события).

После идёт трансляция, в которой участвуют все виды РНК, у каждой есть своя функция:

  1. Информационная – роль матрицы.
  2. Транспортная – добавление аминокислот, определение кодонов.
  3. Рибосомная – образование рибосом, которые поддерживают иРНК.
  4. Транспортная – синтез полипептидной цепи.

Транскрипция и трансляция

Это два наиглавнейших шага биосинтеза.

Как синтезировать белок в мышцы?

Транскрипция с латинского означает «переписывание» – в качестве матрицы применяется ДНК, поэтому происходит синтезирование трёх видов РНК (матричной/информационной, транспортной, рибосомной рибонуклеиновых кислот). Реакция осуществляется с помощью полимеразы (РНК) и с использованием большого количества аденозинтрифосфата.

Выделают два основных действия:

  1. Обозначение конца и начала трансляции присоединением иРНК.
  2. Событие, осуществляемое благодаря сплайсингу, который в свою очередь удаляет неинформационные последовательности РНК, тем самым происходит уменьшение массы матричной рибонуклеиновой кислоты в 10 раз.

Трансляция с латинского означает «перевод» – используется иРНК в качестве матрицы, синтезируются полипептидные цепочки.

Трансляция включает в себя три этапа, которые можно было представить в виде таблицы:

  1. Первый этап. Инициация — формирование комплекса, который участвует в синтезе полипептидной цепочки.
  2. Второй этап. Элонгация — увеличение размеров этой цепи.
  3. Третий этап. Терминация — заключение выше упомянутого процесса.

Схема биосинтеза белка

По схеме видно, как протекает процесс.

Точкой стыковки этой схемы являются рибосомы, в которых синтезируется белок. В простой форме синтез осуществляется по схеме

ДНК {amp}gt; PHK {amp}gt; белок.

Первым начинается этап транскрипции, в котором молекула изменяется в одноцепочную информационную рибонуклеиновую кислоту (иРНК). В ней содержится информация аминокислотной последовательности белка.

Следующей остановкой иРНК будет рибосома, в которой происходит сам синтез. Происходит это путём трансляции, формирования полипептидной цепочки. После этой заурядной схемы, полученный белок транспортируется в разные места, выполняя определённые задачи.

Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме:

  1. Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК.

  2. Второй этап – транспорт м-РНК к рибосомам.

  3. Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу — на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой — атом водорода, то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов — дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия.

Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» — боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени — «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» — защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Мое плачевное положение

Я уже давно топчусь на месте у потолка своего мышечного роста. Давно – это более 20 лет. Каждая тренировка убивает во мне 20-30 грамм белка или 100-150 грамм мышц. А потом они снова вырастают.

Но если я не буду этого делать, то на моем теле останется мышц столько, сколько нужно для сидячего образа жизни со всеми сопутствующими болезнями присущими моему возрасту.

Если вам нравится мое бесполезное занятие – топтание на месте у потолка мышечного роста с разрушение и синтезом 30 грамм белка на тренировке ежедневно, то присоединяйтесь – будьте моим другом Вконтакте или Фейсбуке.

А если вы еще не добрались до потолка мышечного роста и топчитесь на месте, то я могу вас проконсультировать бесплатно.

Лев Гончаров – фитнес-трене с 1994 года 

Какие компоненты клетки участвуют в биосинтезе белка

Как мы уже говорили, биосинтез разделяют на две стадии. В каждой стадии участвуют свои компоненты. На первой стадии это дезоксирибонуклеиновая кислота, информационная и транспортная РНК, нуклеотиды.

Во второй же стадии участвуют компоненты: иРНК, тРНК, рибосомы, нуклеотиды и пептиды.

синтез белка

В список особенностей реакций биосинтеза стоит отнести:

  1. Использование энергии АТФ для химических реакций.
  2. Присутствуют ферменты, задача которых ускорять реакции.
  3. Реакция имеет матричный характер, так как белок синтезируется на иРНК.

Для такого сложного процесса, конечно же, характерны различные признаки:

  1. Первый из них заключается в том, что присутствуют ферменты, без которых сам процесс был бы невозможен
  2. Задействованы все три вида РНК, из этого можно сделать вывод, что центральная роль принадлежит РНК.
  3. Образование молекул производится мономерами, а именно аминокислотами.
  4. Стоит обозначить так же, что специфичность того или иного белка ориентируется расположением аминокислот.

Каковы особенности реакций биосинтеза белка в клетке

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды — вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ — адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок — гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это — эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина — огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента — согласитесь, победа носит чисто символический характер.

Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире.

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю — их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту.

Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты — эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов — один из главных бичей старого метода;

раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов — кропотливый, трудоемкий синтез — легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции — подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2—3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница — в 15 раз.

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» — третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения.

Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру — и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями.

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

Сначала стоит ознакомиться с определением биосинтеза. Биосинтезом называется синтез живыми организмами природных органических соединений.

Если быть проще, то это получение различных веществ с помощью микроорганизмов. Этот процесс занимает важную роль во всех живых клетках. Не забываем и о сложном биохимическом составе.

Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму.

Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка.

С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки.

Транскрипция

Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента:

  • углевод, представленный пентозой – дезоксирибозой;

  • минеральную кислоту – фосфорную;

  • органическое соединение, относящееся к классу азотистых оснований.

Как синтезировать белок в мышцы?

В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия:

  • А – аденин;

  • Г – гуанин;

  • Ц – цитозин;

  • Т – тимин.

Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода.

Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена.

Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью.

РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У).

Как синтезировать белок в мышцы?

Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка.

Трансляция

Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом.

В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК.

Заключение

Многоклеточный организм — аппарат, состоящий из разных клеточных типов, которые дифференцированы – отличаются структурой и функциями. Кроме белков, присутствуют клетки этих типов, которые синтезируют так же себе подобных, в этом заключается различие.

В реакциях матричного синтеза происходит реализация наследственной информации. В каждом организме синтезируются специфичные белковые молекулы. Они вместе с углеводами и жирами накапливаются в плодах растений. В организмах животных выполняют множество разнообразных функций.

Оцените статью
avrora22.ru